Algebra

1 a Factorise fully the expression

$$
20 x-2 x^{2}-6 x^{3}
$$

b Hence, find all solutions to the equation

$$
20 x-2 x^{2}-6 x^{3}=0
$$

$2 \quad A$ is the point $(-2,1)$ and B is the point $(6, k)$.
a Show that $A B^{2}=k^{2}-2 k+65$.
Given also that $A B=10$,
b find the possible values of k.
3 Solve the equations
a $x-\frac{5}{x}=4$
b $\frac{9}{5-x}-1=2 x$
4 a Find the coordinates of the turning point of the curve with equation $y=3-5 x-2 x^{2}$.
b Sketch the curve $y=3-5 x-2 x^{2}$, showing the coordinates of any points of intersection with the coordinate axes.

5 Find in the form $k \sqrt{2}$ the solutions of the equation

$$
2 x^{2}+5 \sqrt{2} x-6=0
$$

6

The diagram shows the curve with equation $y=3 x^{2}-9 x+k$ where k is a constant.
a Find the x-coordinate of the turning point of the curve, P.
Given that the y-coordinate of P is $\frac{17}{4}$,
b find the coordinates of the point Q where the curve crosses the y-axis.
7 By letting $y=2^{x}$, or otherwise, solve the equation

$$
2^{2 x}-10\left(2^{x}\right)+16=0
$$

8 Given that the equation

$$
k x^{2}-2 x+3-2 k=0
$$

has equal roots, find the possible values of the constant k.

$$
\mathrm{f}(x) \equiv 3+4 x-x^{2}
$$

a Express $\mathrm{f}(x)$ in the form $a(x+b)^{2}+c$.
b State the coordinates of the turning point of the curve $y=\mathrm{f}(x)$.
c Solve the equation $\mathrm{f}(x)=2$, giving your answers in the form $d+e \sqrt{5}$.
10 Giving your answers in terms of surds, solve the equations
a $3 x^{2}-5 x+1=0$
b $\frac{x}{x+2}=\frac{3}{x-1}$
11 a By completing the square, find, in terms of k, the solutions of the equation

$$
x^{2}-4 k x+6=0
$$

b Using your answers to part a, solve the equation

$$
x^{2}-12 x+6=0 .
$$

12 a Find in the form $a+b \sqrt{3}$, where a and b are integers, the values of x such that

$$
2 x^{2}-12 x=6 .
$$

b Solve the equation

$$
2 y^{3}+y^{2}-15 y=0
$$

13 Labelling the coordinates of any points of intersection with the coordinate axes, sketch the curves
a $y=(x+1)(x-p)$ where $p>0$,
b $y=(x+q)^{2}$ where $q<0$.
$14 \quad \mathrm{f}(x) \equiv 2 x^{2}-6 x+5$.
a Find the values of A, B and C such that

$$
\mathrm{f}(x) \equiv A(x+B)^{2}+C .
$$

b Hence deduce the minimum value of $\mathrm{f}(x)$.
15 a Given that $t=x^{\frac{1}{3}}$ express $x^{\frac{2}{3}}$ in terms of t.
b Hence, or otherwise, solve the equation

$$
2 x^{\frac{2}{3}}+x^{\frac{1}{3}}-6=0 .
$$

16 a Express $k^{2}-8 k+20$ in the form $a(k+b)^{2}+c$, where a, b and c are constants.
b Hence prove that the equation

$$
x^{2}-k x+2 k=5
$$

has real and distinct roots for all real values of k.
17 a Show that

$$
\left(x^{2}+2 x-3\right)\left(x^{2}-3 x-4\right) \equiv x^{4}-x^{3}-13 x^{2}+x+12 .
$$

b Hence solve the equation

$$
x^{4}-x^{3}-13 x^{2}+x+12=0 .
$$

